If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-19x+36=0
a = 1; b = -19; c = +36;
Δ = b2-4ac
Δ = -192-4·1·36
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{217}}{2*1}=\frac{19-\sqrt{217}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{217}}{2*1}=\frac{19+\sqrt{217}}{2} $
| 2x-(12-x)=3 | | (2x+1)-(x-5)=9 | | y-8=2y+1 | | 2400/x-2400/x+10=8 | | 2(4x-5)-4(2x-3)=2(x-1) | | 7(x/3-3)=28 | | 10-3/4x=-2 | | (12x+6)=30 | | (12-6x)=4x-6 | | 7-p=77 | | 3/n=24/5.6= | | 8/3x5=-1 | | 8/3x-5=1 | | 9x−1= 10x+910x+9 | | 3(y–2)=6(y–1)–3y | | -2x(3x-4)=0 | | -2x(3-4)=0 | | 3a+2=4a+9 | | 8x-2/2+2x+7/9=4 | | 9x-18/4+2=2x | | x+4/5=x-4 | | 3x-9/2=-3 | | 3(3x+2)=-2(2x-4) | | 1/x+5-3x-7/3x^2+19x+20=1/3x+4 | | (29/2)+7=b | | (20/2)+7=b | | (a/2)+7=29 | | -12/13×m=4/39 | | 3x+9=-99- | | 4(2y-3)=9 | | m/9+12=14 | | r/4-6=0 |